\(\int \frac {\sec ^2(c+d x) (A+B \sec (c+d x))}{(a+b \sec (c+d x))^{5/2}} \, dx\) [387]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (warning: unable to verify)
   Maple [B] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F(-1)]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 33, antiderivative size = 387 \[ \int \frac {\sec ^2(c+d x) (A+B \sec (c+d x))}{(a+b \sec (c+d x))^{5/2}} \, dx=\frac {2 \left (a^2 A b+3 A b^3+2 a^3 B-6 a b^2 B\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{3 (a-b) b^3 (a+b)^{3/2} d}+\frac {2 \left (2 a^2 B-3 b^2 (A+B)+a b (A+3 B)\right ) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{3 b^2 \sqrt {a+b} \left (a^2-b^2\right ) d}+\frac {2 a (A b-a B) \tan (c+d x)}{3 b \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}+\frac {2 \left (a^2 A b+3 A b^3+2 a^3 B-6 a b^2 B\right ) \tan (c+d x)}{3 b \left (a^2-b^2\right )^2 d \sqrt {a+b \sec (c+d x)}} \]

[Out]

2/3*(A*a^2*b+3*A*b^3+2*B*a^3-6*B*a*b^2)*cot(d*x+c)*EllipticE((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^
(1/2))*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/(a-b)/b^3/(a+b)^(3/2)/d+2/3*(2*B*a^2-3*b
^2*(A+B)+a*b*(A+3*B))*cot(d*x+c)*EllipticF((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(b*(1-sec(d
*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/b^2/(a^2-b^2)/d/(a+b)^(1/2)+2/3*a*(A*b-B*a)*tan(d*x+c)/b/(
a^2-b^2)/d/(a+b*sec(d*x+c))^(3/2)+2/3*(A*a^2*b+3*A*b^3+2*B*a^3-6*B*a*b^2)*tan(d*x+c)/b/(a^2-b^2)^2/d/(a+b*sec(
d*x+c))^(1/2)

Rubi [A] (verified)

Time = 0.76 (sec) , antiderivative size = 387, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.152, Rules used = {4094, 4088, 4090, 3917, 4089} \[ \int \frac {\sec ^2(c+d x) (A+B \sec (c+d x))}{(a+b \sec (c+d x))^{5/2}} \, dx=\frac {2 \left (2 a^2 B+a b (A+3 B)-3 b^2 (A+B)\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{3 b^2 d \sqrt {a+b} \left (a^2-b^2\right )}+\frac {2 a (A b-a B) \tan (c+d x)}{3 b d \left (a^2-b^2\right ) (a+b \sec (c+d x))^{3/2}}+\frac {2 \left (2 a^3 B+a^2 A b-6 a b^2 B+3 A b^3\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{3 b^3 d (a-b) (a+b)^{3/2}}+\frac {2 \left (2 a^3 B+a^2 A b-6 a b^2 B+3 A b^3\right ) \tan (c+d x)}{3 b d \left (a^2-b^2\right )^2 \sqrt {a+b \sec (c+d x)}} \]

[In]

Int[(Sec[c + d*x]^2*(A + B*Sec[c + d*x]))/(a + b*Sec[c + d*x])^(5/2),x]

[Out]

(2*(a^2*A*b + 3*A*b^3 + 2*a^3*B - 6*a*b^2*B)*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b
]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(3*(a - b)*
b^3*(a + b)^(3/2)*d) + (2*(2*a^2*B - 3*b^2*(A + B) + a*b*(A + 3*B))*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*S
ec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))
/(a - b))])/(3*b^2*Sqrt[a + b]*(a^2 - b^2)*d) + (2*a*(A*b - a*B)*Tan[c + d*x])/(3*b*(a^2 - b^2)*d*(a + b*Sec[c
 + d*x])^(3/2)) + (2*(a^2*A*b + 3*A*b^3 + 2*a^3*B - 6*a*b^2*B)*Tan[c + d*x])/(3*b*(a^2 - b^2)^2*d*Sqrt[a + b*S
ec[c + d*x]])

Rule 3917

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(Rt[a + b, 2]/(b*
f*Cot[e + f*x]))*Sqrt[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[(-b)*((1 + Csc[e + f*x])/(a - b))]*EllipticF[ArcSin
[Sqrt[a + b*Csc[e + f*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4088

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))
, x_Symbol] :> Simp[(-(A*b - a*B))*Cot[e + f*x]*((a + b*Csc[e + f*x])^(m + 1)/(f*(m + 1)*(a^2 - b^2))), x] + D
ist[1/((m + 1)*(a^2 - b^2)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*Simp[(a*A - b*B)*(m + 1) - (A*b - a
*B)*(m + 2)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, A, B, e, f}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0]
 && LtQ[m, -1]

Rule 4089

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Simp[-2*(A*b - a*B)*Rt[a + b*(B/A), 2]*Sqrt[b*((1 - Csc[e + f*x])/(a + b))]*(Sqrt[(-b)*((1 + C
sc[e + f*x])/(a - b))]/(b^2*f*Cot[e + f*x]))*EllipticE[ArcSin[Sqrt[a + b*Csc[e + f*x]]/Rt[a + b*(B/A), 2]], (a
*A + b*B)/(a*A - b*B)], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]

Rule 4090

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Dist[A - B, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] + Dist[B, Int[Csc[e + f*x]*((1 +
 Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]]), x], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && NeQ[A
^2 - B^2, 0]

Rule 4094

Int[csc[(e_.) + (f_.)*(x_)]^2*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_
)), x_Symbol] :> Simp[a*(A*b - a*B)*Cot[e + f*x]*((a + b*Csc[e + f*x])^(m + 1)/(b*f*(m + 1)*(a^2 - b^2))), x]
- Dist[1/(b*(m + 1)*(a^2 - b^2)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*Simp[b*(A*b - a*B)*(m + 1) - (
a*A*b*(m + 2) - B*(a^2 + b^2*(m + 1)))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[A*b - a
*B, 0] && NeQ[a^2 - b^2, 0] && LtQ[m, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {2 a (A b-a B) \tan (c+d x)}{3 b \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}+\frac {2 \int \frac {\sec (c+d x) \left (-\frac {3}{2} b (A b-a B)+\frac {1}{2} \left (a A b+2 a^2 B-3 b^2 B\right ) \sec (c+d x)\right )}{(a+b \sec (c+d x))^{3/2}} \, dx}{3 b \left (a^2-b^2\right )} \\ & = \frac {2 a (A b-a B) \tan (c+d x)}{3 b \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}+\frac {2 \left (a^2 A b+3 A b^3+2 a^3 B-6 a b^2 B\right ) \tan (c+d x)}{3 b \left (a^2-b^2\right )^2 d \sqrt {a+b \sec (c+d x)}}-\frac {4 \int \frac {\sec (c+d x) \left (\frac {1}{4} b \left (4 a A b-a^2 B-3 b^2 B\right )+\frac {1}{4} \left (a^2 A b+3 A b^3+2 a^3 B-6 a b^2 B\right ) \sec (c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx}{3 b \left (a^2-b^2\right )^2} \\ & = \frac {2 a (A b-a B) \tan (c+d x)}{3 b \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}+\frac {2 \left (a^2 A b+3 A b^3+2 a^3 B-6 a b^2 B\right ) \tan (c+d x)}{3 b \left (a^2-b^2\right )^2 d \sqrt {a+b \sec (c+d x)}}-\frac {\left (a^2 A b+3 A b^3+2 a^3 B-6 a b^2 B\right ) \int \frac {\sec (c+d x) (1+\sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx}{3 b \left (a^2-b^2\right )^2}+\frac {\left (2 a^2 B-3 b^2 (A+B)+a b (A+3 B)\right ) \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx}{3 (a-b) b (a+b)^2} \\ & = \frac {2 \left (a^2 A b+3 A b^3+2 a^3 B-6 a b^2 B\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{3 (a-b) b^3 (a+b)^{3/2} d}+\frac {2 \left (2 a^2 B-3 b^2 (A+B)+a b (A+3 B)\right ) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{3 (a-b) b^2 (a+b)^{3/2} d}+\frac {2 a (A b-a B) \tan (c+d x)}{3 b \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}+\frac {2 \left (a^2 A b+3 A b^3+2 a^3 B-6 a b^2 B\right ) \tan (c+d x)}{3 b \left (a^2-b^2\right )^2 d \sqrt {a+b \sec (c+d x)}} \\ \end{align*}

Mathematica [B] (warning: unable to verify)

Leaf count is larger than twice the leaf count of optimal. \(3514\) vs. \(2(387)=774\).

Time = 26.34 (sec) , antiderivative size = 3514, normalized size of antiderivative = 9.08 \[ \int \frac {\sec ^2(c+d x) (A+B \sec (c+d x))}{(a+b \sec (c+d x))^{5/2}} \, dx=\text {Result too large to show} \]

[In]

Integrate[(Sec[c + d*x]^2*(A + B*Sec[c + d*x]))/(a + b*Sec[c + d*x])^(5/2),x]

[Out]

((b + a*Cos[c + d*x])^3*Sec[c + d*x]^3*((-2*(a^2*A*b + 3*A*b^3 + 2*a^3*B - 6*a*b^2*B)*Sin[c + d*x])/(3*b^2*(-a
^2 + b^2)^2) + (2*(A*b*Sin[c + d*x] - a*B*Sin[c + d*x]))/(3*(-a^2 + b^2)*(b + a*Cos[c + d*x])^2) + (2*(2*a^2*A
*b*Sin[c + d*x] + 2*A*b^3*Sin[c + d*x] + a^3*B*Sin[c + d*x] - 5*a*b^2*B*Sin[c + d*x]))/(3*b*(-a^2 + b^2)^2*(b
+ a*Cos[c + d*x]))))/(d*(a + b*Sec[c + d*x])^(5/2)) + (2*(b + a*Cos[c + d*x])^2*((a^2*A)/(3*(-a^2 + b^2)^2*Sqr
t[b + a*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]) + (A*b^2)/((-a^2 + b^2)^2*Sqrt[b + a*Cos[c + d*x]]*Sqrt[Sec[c + d*x]
]) + (2*a^3*B)/(3*b*(-a^2 + b^2)^2*Sqrt[b + a*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]) - (2*a*b*B)/((-a^2 + b^2)^2*Sq
rt[b + a*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]) + (a^3*A*Sqrt[Sec[c + d*x]])/(3*b*(-a^2 + b^2)^2*Sqrt[b + a*Cos[c +
 d*x]]) - (a*A*b*Sqrt[Sec[c + d*x]])/(3*(-a^2 + b^2)^2*Sqrt[b + a*Cos[c + d*x]]) - (5*a^2*B*Sqrt[Sec[c + d*x]]
)/(3*(-a^2 + b^2)^2*Sqrt[b + a*Cos[c + d*x]]) + (2*a^4*B*Sqrt[Sec[c + d*x]])/(3*b^2*(-a^2 + b^2)^2*Sqrt[b + a*
Cos[c + d*x]]) + (b^2*B*Sqrt[Sec[c + d*x]])/((-a^2 + b^2)^2*Sqrt[b + a*Cos[c + d*x]]) + (a^3*A*Cos[2*(c + d*x)
]*Sqrt[Sec[c + d*x]])/(3*b*(-a^2 + b^2)^2*Sqrt[b + a*Cos[c + d*x]]) + (a*A*b*Cos[2*(c + d*x)]*Sqrt[Sec[c + d*x
]])/((-a^2 + b^2)^2*Sqrt[b + a*Cos[c + d*x]]) - (2*a^2*B*Cos[2*(c + d*x)]*Sqrt[Sec[c + d*x]])/((-a^2 + b^2)^2*
Sqrt[b + a*Cos[c + d*x]]) + (2*a^4*B*Cos[2*(c + d*x)]*Sqrt[Sec[c + d*x]])/(3*b^2*(-a^2 + b^2)^2*Sqrt[b + a*Cos
[c + d*x]]))*Sec[c + d*x]^(5/2)*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*(2*(a + b)*(a^2*A*b + 3*A*b^3 + 2*a^3*B
- 6*a*b^2*B)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*Ell
ipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] - 2*b*(a + b)*(a*b*(A - 3*B) + 3*b^2*(A - B) + 2*a^2*B)*Sqrt
[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan
[(c + d*x)/2]], (a - b)/(a + b)] + (a^2*A*b + 3*A*b^3 + 2*a^3*B - 6*a*b^2*B)*Cos[c + d*x]*(b + a*Cos[c + d*x])
*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]))/(3*(-(a^2*b) + b^3)^2*d*Sqrt[Sec[(c + d*x)/2]^2]*(a + b*Sec[c + d*x])^(
5/2)*((a*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*Sin[c + d*x]*(2*(a + b)*(a^2*A*b + 3*A*b^3 + 2*a^3*B - 6*a*b^2*
B)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[Arc
Sin[Tan[(c + d*x)/2]], (a - b)/(a + b)] - 2*b*(a + b)*(a*b*(A - 3*B) + 3*b^2*(A - B) + 2*a^2*B)*Sqrt[Cos[c + d
*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)
/2]], (a - b)/(a + b)] + (a^2*A*b + 3*A*b^3 + 2*a^3*B - 6*a*b^2*B)*Cos[c + d*x]*(b + a*Cos[c + d*x])*Sec[(c +
d*x)/2]^2*Tan[(c + d*x)/2]))/(3*(-(a^2*b) + b^3)^2*(b + a*Cos[c + d*x])^(3/2)*Sqrt[Sec[(c + d*x)/2]^2]) - (Sqr
t[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*Tan[(c + d*x)/2]*(2*(a + b)*(a^2*A*b + 3*A*b^3 + 2*a^3*B - 6*a*b^2*B)*Sqrt[
Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan[
(c + d*x)/2]], (a - b)/(a + b)] - 2*b*(a + b)*(a*b*(A - 3*B) + 3*b^2*(A - B) + 2*a^2*B)*Sqrt[Cos[c + d*x]/(1 +
 Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a
 - b)/(a + b)] + (a^2*A*b + 3*A*b^3 + 2*a^3*B - 6*a*b^2*B)*Cos[c + d*x]*(b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^
2*Tan[(c + d*x)/2]))/(3*(-(a^2*b) + b^3)^2*Sqrt[b + a*Cos[c + d*x]]*Sqrt[Sec[(c + d*x)/2]^2]) + (2*Sqrt[Cos[(c
 + d*x)/2]^2*Sec[c + d*x]]*(((a^2*A*b + 3*A*b^3 + 2*a^3*B - 6*a*b^2*B)*Cos[c + d*x]*(b + a*Cos[c + d*x])*Sec[(
c + d*x)/2]^4)/2 + ((a + b)*(a^2*A*b + 3*A*b^3 + 2*a^3*B - 6*a*b^2*B)*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 +
Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*((Cos[c + d*x]*Sin[c + d*x])/(1 + Cos[c +
 d*x])^2 - Sin[c + d*x]/(1 + Cos[c + d*x])))/Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])] - (b*(a + b)*(a*b*(A - 3*B)
 + 3*b^2*(A - B) + 2*a^2*B)*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c +
d*x)/2]], (a - b)/(a + b)]*((Cos[c + d*x]*Sin[c + d*x])/(1 + Cos[c + d*x])^2 - Sin[c + d*x]/(1 + Cos[c + d*x])
))/Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])] + ((a + b)*(a^2*A*b + 3*A*b^3 + 2*a^3*B - 6*a*b^2*B)*Sqrt[Cos[c + d*x
]/(1 + Cos[c + d*x])]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*(-((a*Sin[c + d*x])/((a + b)*(1 + C
os[c + d*x]))) + ((b + a*Cos[c + d*x])*Sin[c + d*x])/((a + b)*(1 + Cos[c + d*x])^2)))/Sqrt[(b + a*Cos[c + d*x]
)/((a + b)*(1 + Cos[c + d*x]))] - (b*(a + b)*(a*b*(A - 3*B) + 3*b^2*(A - B) + 2*a^2*B)*Sqrt[Cos[c + d*x]/(1 +
Cos[c + d*x])]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*(-((a*Sin[c + d*x])/((a + b)*(1 + Cos[c +
d*x]))) + ((b + a*Cos[c + d*x])*Sin[c + d*x])/((a + b)*(1 + Cos[c + d*x])^2)))/Sqrt[(b + a*Cos[c + d*x])/((a +
 b)*(1 + Cos[c + d*x]))] - a*(a^2*A*b + 3*A*b^3 + 2*a^3*B - 6*a*b^2*B)*Cos[c + d*x]*Sec[(c + d*x)/2]^2*Sin[c +
 d*x]*Tan[(c + d*x)/2] - (a^2*A*b + 3*A*b^3 + 2*a^3*B - 6*a*b^2*B)*(b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Sin
[c + d*x]*Tan[(c + d*x)/2] + (a^2*A*b + 3*A*b^3 + 2*a^3*B - 6*a*b^2*B)*Cos[c + d*x]*(b + a*Cos[c + d*x])*Sec[(
c + d*x)/2]^2*Tan[(c + d*x)/2]^2 - (b*(a + b)*(a*b*(A - 3*B) + 3*b^2*(A - B) + 2*a^2*B)*Sqrt[Cos[c + d*x]/(1 +
 Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*Sec[(c + d*x)/2]^2)/(Sqrt[1 - Tan[(c +
 d*x)/2]^2]*Sqrt[1 - ((a - b)*Tan[(c + d*x)/2]^2)/(a + b)]) + ((a + b)*(a^2*A*b + 3*A*b^3 + 2*a^3*B - 6*a*b^2*
B)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*Sec[(c + d*x)
/2]^2*Sqrt[1 - ((a - b)*Tan[(c + d*x)/2]^2)/(a + b)])/Sqrt[1 - Tan[(c + d*x)/2]^2]))/(3*(-(a^2*b) + b^3)^2*Sqr
t[b + a*Cos[c + d*x]]*Sqrt[Sec[(c + d*x)/2]^2]) + ((2*(a + b)*(a^2*A*b + 3*A*b^3 + 2*a^3*B - 6*a*b^2*B)*Sqrt[C
os[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(
c + d*x)/2]], (a - b)/(a + b)] - 2*b*(a + b)*(a*b*(A - 3*B) + 3*b^2*(A - B) + 2*a^2*B)*Sqrt[Cos[c + d*x]/(1 +
Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a
- b)/(a + b)] + (a^2*A*b + 3*A*b^3 + 2*a^3*B - 6*a*b^2*B)*Cos[c + d*x]*(b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2
*Tan[(c + d*x)/2])*(-(Cos[(c + d*x)/2]*Sec[c + d*x]*Sin[(c + d*x)/2]) + Cos[(c + d*x)/2]^2*Sec[c + d*x]*Tan[c
+ d*x]))/(3*(-(a^2*b) + b^3)^2*Sqrt[b + a*Cos[c + d*x]]*Sqrt[Sec[(c + d*x)/2]^2]*Sqrt[Cos[(c + d*x)/2]^2*Sec[c
 + d*x]])))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(6306\) vs. \(2(357)=714\).

Time = 20.27 (sec) , antiderivative size = 6307, normalized size of antiderivative = 16.30

method result size
parts \(\text {Expression too large to display}\) \(6307\)
default \(\text {Expression too large to display}\) \(6348\)

[In]

int(sec(d*x+c)^2*(A+B*sec(d*x+c))/(a+b*sec(d*x+c))^(5/2),x,method=_RETURNVERBOSE)

[Out]

result too large to display

Fricas [F]

\[ \int \frac {\sec ^2(c+d x) (A+B \sec (c+d x))}{(a+b \sec (c+d x))^{5/2}} \, dx=\int { \frac {{\left (B \sec \left (d x + c\right ) + A\right )} \sec \left (d x + c\right )^{2}}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \]

[In]

integrate(sec(d*x+c)^2*(A+B*sec(d*x+c))/(a+b*sec(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

integral((B*sec(d*x + c)^3 + A*sec(d*x + c)^2)*sqrt(b*sec(d*x + c) + a)/(b^3*sec(d*x + c)^3 + 3*a*b^2*sec(d*x
+ c)^2 + 3*a^2*b*sec(d*x + c) + a^3), x)

Sympy [F]

\[ \int \frac {\sec ^2(c+d x) (A+B \sec (c+d x))}{(a+b \sec (c+d x))^{5/2}} \, dx=\int \frac {\left (A + B \sec {\left (c + d x \right )}\right ) \sec ^{2}{\left (c + d x \right )}}{\left (a + b \sec {\left (c + d x \right )}\right )^{\frac {5}{2}}}\, dx \]

[In]

integrate(sec(d*x+c)**2*(A+B*sec(d*x+c))/(a+b*sec(d*x+c))**(5/2),x)

[Out]

Integral((A + B*sec(c + d*x))*sec(c + d*x)**2/(a + b*sec(c + d*x))**(5/2), x)

Maxima [F(-1)]

Timed out. \[ \int \frac {\sec ^2(c+d x) (A+B \sec (c+d x))}{(a+b \sec (c+d x))^{5/2}} \, dx=\text {Timed out} \]

[In]

integrate(sec(d*x+c)^2*(A+B*sec(d*x+c))/(a+b*sec(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

Timed out

Giac [F]

\[ \int \frac {\sec ^2(c+d x) (A+B \sec (c+d x))}{(a+b \sec (c+d x))^{5/2}} \, dx=\int { \frac {{\left (B \sec \left (d x + c\right ) + A\right )} \sec \left (d x + c\right )^{2}}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \]

[In]

integrate(sec(d*x+c)^2*(A+B*sec(d*x+c))/(a+b*sec(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)*sec(d*x + c)^2/(b*sec(d*x + c) + a)^(5/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sec ^2(c+d x) (A+B \sec (c+d x))}{(a+b \sec (c+d x))^{5/2}} \, dx=\int \frac {A+\frac {B}{\cos \left (c+d\,x\right )}}{{\cos \left (c+d\,x\right )}^2\,{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^{5/2}} \,d x \]

[In]

int((A + B/cos(c + d*x))/(cos(c + d*x)^2*(a + b/cos(c + d*x))^(5/2)),x)

[Out]

int((A + B/cos(c + d*x))/(cos(c + d*x)^2*(a + b/cos(c + d*x))^(5/2)), x)